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Part One: Introduction

1.1 State Space Models and Probabilistic Dynamic Systems, with

Examples in Enginering, Bioinformatics and Finance
1.2 Review: Basic Monte Carlo Methods

1.3 Introduction of Sequential Monte Carlo Methods



Part Two: Sequential Monte Carlo Methods — the Framework

and Implementation

2.1 A Framework

2.1.1 (Optional) Intermediate Distributions
2.1.2 Propogation: Sampling Distribution
2.1.3 Resampling/Rejuvenation

2.1.4 Inference: Rao-Blackwellization
2.2 Some Theoretically Results

2.3 Some Applications (in detail)



Part Three: Advanced Sequential Monte Carlo

3.1 Mixture Kalman Filter

3.1.1 Conditional Dynamic Linear Models

3.1.2 Mixture Kalman Filters

3.1.3 Partial Conditional Dynamic Linear Models
3.1.4 Extend Mixture Kalman Filters

3.1.5 Future Directions

3.2 Constrained SMC

3.3 Parametrer Estimation in SMC



1.1. State Space Models

state equation: x = gi(xi_1,61) or xy ~ q- | T4_1)

observation equation: y; = hy(x,e;) or oy~ fi(- | ;)

Yt Yi+1
T T

L My Ty ——

t
7Tt<mt> — p(CUl, ceey It | Yty - .- 7yt> X Hfs(ys ’ Is)Qs<x8 | 5175_1>

s=1

Objective:

(1) Estimation: p(x; | y1,...y)
(2) Prediction: p(xii1 | y1,. .., y1)
(3) Smoothing: p(xy, ..., 211 | y1,-..,Yt)
(3.1) delayed estimation: p(x; 4| y1,...,y:)

On-Line in Real Time



Linear and (GGaussian Systems:

xy = Hyxe 1 + Wy
Yy = Gy + Vi

where w; ~ N(0,1) and v; ~ N(0, I).

p(we | yn, - ye) ~ N (e, X)

Kalman Filter:

Recursive updating:

(Mta Zt) — (Mt+1, Zt+1)

Very easy and fast!



Nonlinear and Non-Gaussian:

Easy: p(xi1,...,2¢ | yy)

Difficult:
SUt | yt / /iUtp L1y, Tt | yt)d5'71
yt

where y, = (y1, ...,

Our approach: Monte Carlo method

Generate samples azgl), e ,:Izgm) from the target distribution p(x; |

y,), then use approximation

S ()

Flh(z) | y) ~ &=L




Example 1: Target Tracking

A single target moving on a straight line with random (Gaussian)

acceleration in a clutter environment: x; = (d;, vy).

Constant acceleration within a period a; = w;/T. T is the time

duration between two observations.

State Equation (motion model):

dy = i1+ v T +wT/2, w ~ N0,q)

V¢ = Vp_1 + Wy
Observation equation:

Z=d e, e~ N(Oa”'“2>

The system is linear and Gaussian.



Example 2: Tracking a target in clutter

State Equation (motion model):

dt = dt—l + ’Ut_lT + th/Q

Vp = Vg1 T+ Wy
At time ¢, observe m; signals, where
m; ~ Bernoulli(p;) + Poisson(\A)

The true signal z; = d; + ¢; has probability p; to be observed,
The false signals are uniformly distributed in the detection re-

gion A.



T=1,p;=09, A=0.1, Var(w;) = 0.1, Var(e;) =1
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Example 3: Tracking a maneuvering target

A single target moving in a 2-d space with random (Gaussian)

acceleration plus maneuvering

ry = Hxy_1+ Fu + Wuwy
Yy = Ga:tJert

where w; ~ N(0,]) and v; ~ N(0,[) are independent.

I; maneuvering status:

I; = 0, no maneuvering, u; = 0
I; = 1, slow maneuvering, u; ~ N(0, s{I)

I; = 2, fast maneuvering, u; ~ N(0, s51)

With known transition matrix P = P([;q | I;).

11
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Example 4: Mobile network for nuclear material survelliance

e Detection of nuclear material in large cities

— radiation dispersion devices (dirty bombs)
—enriched uranium and weapon grade plutonium (nuclear
weapons)
e Mobile sensor network
— inexpensive sensor with GPS mounted on taxi cabs and
police vehicles

— command center receives signals and does the analysis in

real time

14



Source and sensor specification

e Signal source intensity function z(r) = ¢/r?

— r distance to source.

— ¢ related to the total energy of the source.
e Multi-source intensity:

— Same spectra: z(r) = > ¢;/r?

— Different spectra: z(r) = max{c;/r?}
e Sensor: True signal S =1 if z(r) > d

— Source visible range: r* < ¢/d
® Sensor error:

— Sensor False Positive rate y=P(D=1]| 5 =0)
— Sensor False Negative rate 6 = P(D=0]| 5 =1)

15
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State Space Model

State Equation:
e Number of sources k follow a Markov chain (a state variable)
e Source location and source power as state variables

— Motion model for the source location (with map)

— visible range modeled as random walk
Observation Equation:
e observations: (y;(t), D;(t)) (for every sensor)
e let d;(t) =1 if ||y;(t) — s(t)|| < ¢* where ¢* is sensor range
e likelihood

P(DZ- — 1) — (1 _ 5)di(t)51_di(t)/yl_dt(t)(1 _ ,7>dz-(t)

16



Example 5: All Source Positioning and Navigation System

® enable/s| low cost, robust, and seamless navigation solutions
® for military users on any operational platform and in any environment,
e with or without GPS.

Objectives:

e rapid integration and reconfiguration of any combination of

SEeNnsors.

e using Images, Maps, Signal databases, Location lookup tables (with

landmarks, ranging signal sources, etc.)

e with platforms including Dismounts, UAVs (all sizes), Submersibles,
Wheeled vehicles, Tracked Vehicles, Aircraft, Small robots

e under environments: Underwater, Underground, Jungle, Forest canopy,

Suburban, Urban canyon, Building interior, Open field

17



Computing resources

e Portable:
—small, light and limited battery power
— single target

e Vehicle mounted

— medium size, good power source.

— a small group of targets, close to each other
e Central command

— unlimited computing source
— many many targets

— new source generation

18



Navigational sensors:
e GPS — signals from multiple satellites

— can be blocked by overcast, weak in the city
— not available indoor, in tunnels etc

— can be jammed
e Wi-Fi/RF receivers

— measures distance to known locations
— using signal power
e Inertial measurement unit (IMU)

— a combination of accelerometers and gyroscopes
— measures acceleration related to its own frame
— measures rotational acceleration of the unit (frame)

— often in combination with gravity sensors, barometer, and

magnetic compass

19



e Range Finder

— Measure distance to a known landmark

— with the assistance of a map

e Millimeter-Wave Radar (based on radio-frequency technol-
ogy)
— distance and relative velocity

— weather independent

e Star tracker, acoustic sensors, GyroCompass, inclinometer, ...

20
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State Space Models

e State:

— 3-D position, velocity and acceleration
— other sensor related states (IMU facing angles)
— Motion states: stationary, walking, on vehicle ...

— Environmental states: open field, highway, jungle ...

e Observations: sensor readings
Special features:

e Plug-and-Play: Sensor in-and-out, hence changing system con-

figuations

e Limited computational power — approximation, sensor selec-

tion and adpatation

e Sensor network — a group of devices moving together.

21



Example 6: Digital Signal Extraction in Fading Channels

, Lo
St -~ D—Y:

e State Equations: ¢ o, = Gux;

St~ p(' | 8t—1>

e Observation equation: y; = o;s; + v

e oy = Gx;: Butterworth filter of order r =3 i.e. ARMA(3,3)
Cutoff frequency 0.1

e Noise: (1) vy~ N(0,0%) (2) vy~ (1 —a)N(0,07) + aN(0,03)

22
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Phase Ambiguity: p(oy,s:|vy,) =p(—ay, —s: | y,)

Differential coding:
Information sequence: sq,..., s;.

Transmitted sequence: sj,...,s;, s.t s; (s; =54, S] = S1.
Differential detector:

S; = sign(yyr—1) = sign(apay_18¢ + ausier 1 + p_18; 1€ + e_1€;)
Assumption: «; changing slowly.

Error floor: the frequency that o; changes the sign.

24
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Example 7: Blind Equalization

€t

l
si(digital) — S b5, — @ —u

Objective: On-line estimation of s; using the observed output y;

without knowing the system coefficients 0,.

26



015 = ((Qﬂ, Ce e (9@) and Tt — (St, St—1,.-

State Equation:

(01

00

Observation equation:

.y St—q>/

0, =0,

o)

e 0

| -+

)

Yy = 071 + &
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Example 8: Stochastic Volatility Models:

Y; stock returns (zero mean). «; volatility

State Equation: oy =c+ Qay_1+ 1
Observation Equation: Y; ~ N(0,exp(ay))
where 7, ~ N(0,07), and ¢ > 0.

Or

State Equation: Q= C+ Qay_1 + 1
Observation Equation: log(Y?) = a; + v
where v; = log(e?), e; ~ N(0,1).

28



Example 9: Yield curve (Interest rate) over time

29



Curve time series X;(s) driven by dynamic processes

e Any fixed t, Xi(s)= fi(s;0;) +¢e:(s), and s e
e The function f;(-) is known, except (parameter) 6,.
® ,(s): a white noise process defined on () with E(g(s)) = 0.

e §;: a random (driving) process over t.

e The dependency between X;(s) is completely characterized by

the parameter process 6, and the noise process ¢,.
e We call {6;} the driving process.

e In most applications, X;(-) is only observed at a finite number

of locations { X;(s4), i =1,...,m:}.

30



Finite dimensional driving processes

0, follows a parametric ARMA process:

Xi(sti) = f(513,00) +e(s), 1=1,...,my,
025 — g(et—la SRR et—pa Cty .. 7€t—cp7>7

) |
Xi(s) Xit1(s)
T T

e A generalized state space model

® g(-) is a known function with unknown parameters ~ and ¢; is

a sequence of scalar or vector white noises.

31



Probabilistic Dynamic Systems

Definition: A probabilistic dynamic system is abstracted as a
sequence of evolving probability distributions 7 (x;).

x;: state variable:

(i) increasing dimension: x;,1 = (o, T441)

(ii) discharging: x; = (%, 1, d;)

(iii) no change: x;,1 = x;

State space model is a special case of probabilistic dynamic sys-

tem.

7Tt<iBt) :p@?l,---,ﬂ?t | yla"'7yt)
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Example 10: Sequential Bayesian Inference:

and

33



Example 11: Bayesian Missing Data

®2,...2, iid from p(z,0).

® 2; = (y;,x;): y; observed z; missing
Let «; = (zg, 21, ..., 2¢). xo=0. y, = (Y1, -, Yt)-
Then the dynamic system is m(x;) = p(x; | y,)

Note: for fixed 6, the likelihood can be evaluated

34



The Growth Principle

Decompose a complex problem into a sequence of simpler problems,

— forming a dynamic system from a fized dimensional problem

e Target distribution 7(x) where x = (z1,...,zy)

o Let ;= (x1,...,7¢) = (x4_1, 7¢)

e Define a sequence of intermediate distributions m;(x;).
e Moving from 7;_(x; 1) to m(x;) is simple.

e Moving from m;_1(x; 1) to m(x;) is smooth.
/Wt(wt—la ﬂi‘t)dﬂft ~ Wt—l(wt—l)

o 7TN<CBN> = w(w)

35



Example 12: Self-avoiding walks (SAW) and Self-avoiding loops
(SAL)

 dibedibedibedl ¢ \ il ¢ s dibadiedil ¢

-9 ® ® o ® 900
® = -9 ® ‘—eo
® o ® o oo
[ AP [ AP

e How many are there?
e What is the average size of enclosed void of SAL(n)?

e What is the average number of contacts?

36



Protan Structures

PHE 374

Stat 353: Monte Carlo Methods




RNA local structure

12¢ 12+
8 R —ll— enumeration 8 —ll— enumeration
—— SMC —&— SMC
Xm —4A— Turner | —&— Turner
~— =1
3 —
4l 4
0 0

—il— enumeration X —ll— enumeration
o 8 L ‘sA/A i‘srmger [ i?mger

< 8t
2

4t 4l

O L R L R L R L R L R L 0 R L R L R L R L R L R L

5 10 15 20 25 30 5 10 15 20 25 30
Loop length Loop length
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Enumeration:

n SAWs SALs void size
14 110,188 4,116 1.40
16 802,075 23,504 2.06
18 5,808,335 137,412 2.82
20 41,889,578 818,210 3.68
22 301,100,754 4,945,292 4.63

24  2,158,326,727 30,255,240 5.68

38



SALs:
e Starting at (0,0) and (1,0) and ending at (0,0)
e Target distribution: uniform of all SALs of length n.
e Partial chain (x1,...,7;) is a SAW.

e Strong constraint at the end — shrinking support
Hence

e Intermediate distributions

m(x;): uniform of all SAWSs of length ¢ such that
d(xy) <n—t (support)

where d(x;) = |x41] + |22

39



Example 13: Diffusion Bridges

(Multivariate) Diffusion process v; satisfying SDE:
dvy = b(vy; 0)dt + o(vy; 0)d By
where B;: Brownian Motion. #: unknown parameters

Observations: v, = v, ¢ = 0,...,n, observed at discrete time

1

points tg,...,1t,.
Aims:

e Estimate the log-likelihood function (conditioned on wvy)

L<8> — lng<U17 .oy Up ‘ Vo, 8) — Z lng(’UZ ’ Vi—1, 6)
1=1

e Obtain the MLE of 0

e Estimate E(h(v[ty,t,])) (e.g. quantile of the path v([ty,1,]))

40



Consider the transition density p(v; | vy, ).

e Except for a few cases, no analytical form for p(v; | v, 0)

o If v|ty,t;] is known or observed completely, then p(v|ty, ti] | 0)

can be found since
3]

o(th) — vlty) = / b(u(t), 0)dt + / o(v(t), 0)dB,.

to to

The integration can be obtained analytically or numerically.
e But v(#y,t;) is missing.

e Monte Carlo: simulate the diffusion bridge v(ty,¢;) following
p(v(to, t1) | vo,v1,0)

41



35 : :
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e Consider one segment [, ;] (due to Markovian property).

e Euler-Maruyama approximation (Gaussian system)
Vim Viear + 0(Viear; O)At + o(Viear; 0)(We — Wiead)

e Divide [0, 1] into small intervals 0 < s; < ... < s, < 1.
o V,,...,V, missing.

e Target distribution (V4 V;,,...,V; ,Vi | 0) can be easily evalu-
ated.

e The intermediate distributions: m(Vg, V;,,...,V,,, Vi | 8) defined
by the same linearized system, with special treatment of the

last large step from V, to V;.

43



Fixed dimension with augmentation

Augmentation (expanding dimensions): [Moral et al (2006)]

e Target distribution 7(z), for z € Q
o Let ;= (z1,...,7;) € Q" where x; € Q.
e Construct a sequence of intermediate distributions m;(x;).
e The marginal distribution of 7, (z,) = 7(x,).
Note:

e This is very similar to MCMC.

e Samples are moved within the same space with the trial dis-

tribution g¢;(x; | 2;1).
e Eventually the final marginal dist. is the target dist.
e Finite steps of movements, but with weights

44



For example:

e Design a sequence of marginal intermediate distributions m;(z;),
with 7,(x,) = 7(x).

For example:

— () oc ()% ()~ with 0 < ¢ < ... < ¢ = 1.

X
—m(x) < w(x | y1,...,y:): sequential new observations
X

— m(z) o< w(x)? with ¢, — oo (simulated annealing)

e Let
t—1

7Tt(5’71, e aflft) — 7Tt(~’13t> H Lk<x/€+17 ilflc)
k=1

where Li(z,y) is a Markov kernel with 7, as the invariant dis-

tribution.
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Other Applications:

e Target tracking (Gordon et al 1993, Avitzour 1995, Bglviken
et al 1997, McGinnity and Irwin, 2001, Irwin et al 2002.
Salmond and Gordon, 2001, Arulampalam et al 2002, Orton
and Fitzgerald, 2002, Hueet al, 2002, Gustafsson et al 2002)

e Target recognition (Srivastava et al 2001).
e Blind equalization (Liu and Chen 1995)
e Speech recognition (Rabiner 1989)

e Computer vision (Isard and Blake 1996, 1998, 2001, Torma
and Szepesvari, 2001)

e Mobile robot localization (Dellaert et al 1999, Fox et al 1999,
2001)

e Freeway traffic vision (for vehicle control) (Huang et al 1994)
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e DN A sequence analysis (Churchill 1989)

e Stochastic volatility model (Pitt and Shephard 1997, Barndorff-
Nielsen and Shephard, 2002)

e Expert systems (Spiegelhalter et al 1990, Kong et al 1994,
Berzuini et al. 1997)

e Switching (auto)regression models (Kaufmann, 2002)

e Dynamic Bayesian networks (Koller and Lerner, 2001, Mur-
phy and Russell, 2001)

e On-line control of industrial production (Marrs, 2001)
e Combinatorial optimizations (Wong and Liang 1997)

e Wireless communications (Chen et al 2000, Wang et al 2000)
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e Signal processing (Djuric, 2001, Wang et al 2002)
e Audio signal enhancing (Fong et al, 2002)
e Data network analysis (Coates and Nowak, 2002)

e Chain polymer (Liang et al 2002, Liu et al 2002, Zhang et al
2003, Zhang et al 2004)

e Counting 0-1 tables (Liu 2001)

e Neural networks (Andriew et al 1999, de Freitas et al. 2000)
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